A semi-automatic mapper for TOAW IV in QGIS

Markus Gattringer
December 10, 2020

Contents
I__Preamblel 2
[L Requirements| 2
... 2
1.2 DEMI. . . o e e 2
1.3 Basemap|. o e 2
[1.4 This package| 3
II_Process| 4
2_Grid 5
2.1 General grid|. 5
B2 Connection es . . . o v v v v o e 6
[B_Terrainl 7
[3.1 Terrain analysis|. 7
B2 Manual inspection] 8
8.3 _Generate terrain texturel L L e 8
11
4.1 Coverage analysis|. oL e e e e 11
4.2 Generate coverage texture]o Lo e e e 13
6 Water] 17
b.1 Cumulative overlap analysis| L 17
.2 _Generate water texturel. L e e 17
[6_Pathsl 20
6.1 Riversl e e 20
6.2 Roadsl e e 22
6.3 Raill e 24
[T_Bordersl 26
[7.1 Overlap analysis| o e 26
7.2 Overlap texture| o e 26
8 Annotations] 28
B.1 Tabelsl e e e 28
8 DOLS| . . o o 30
9 Exporting 32
9.1 Plugins — Python Console — Show Editor — Open Script...|. 32

Part 1
Preamble

1 Requirements

1.1 QGIS

The first thing that is required is QGIS, a free and open geographic information system (GIS). QGIS is
basically the lower-key alternative to ArcGIS. With QGIS, amends have to be made regarding capability,
but at the advantage of not having to pay a fortune for a GIS software. Despite this downside, QGIS is still
a very powerful tool, and more than sufficient for the task at hand.

QGIS is available here: https://qgis.org/en/site/. Any recent version should do; version 3.14 has
native support for vector tiles, which might come handy. This guide was created using 3.16, except for
the terrain creation, as currently automatic conversion between CRS is not handled by the raster analysis
algorithm. Additional plugins are not needed; the base installation works fine.

QGIS can be crash prone, depending upon the task, system configuration, and the type and amount of
layers loaded. This includes reproducible system freezes for certain grid sizes. So, caveat emptor.

Familiarization with the basic functions of the program is recommended. While the process described
in this document can be mostly followed to the letter, there are preparatory processes that are not covered
here. Additionally, in subsection manual analysis of a layer needs to be performed.

1.2 DEM

To classify the terrain, a digital elevation model (DEM) is required. DEM usually comes in the form of
Geo TIFF lossless compressed gray scale raster files. DEM data is widely available: there are global 90 m-
resolution datasets available, regional datasets with resolution in the 30 m-area (e. g. European datasets at
https://land.copernicus.eu/imagery-in-situ/eu-dem) and local datasets generated from LIDAR data
with resolution below 10m (e. g. an Austrian dataset at https://www.data.gv.at/katalog/dataset/
d88a1246-9684-480b-a480-f£63286b35b7)). Those sets may or may not be available for free.

It may be necessary to combine and rescale several DEM tiles to achieve complete coverage. The guide
will assume that an appropriate DEM file is used.

1.3 Basemap

A vector basemap, generally consisting of paths denoting line features like roads and rivers, and polygons
denoting area features like forests and bodies of water, is the second requirement. GIS data handled by the
authorities is generally in such a format.

Vector base data is generally not available as easily as DEM data; and if it is, one usually needs to purchase
it. This project was started due to the easy and free availability of the official vector base map for Austria at
https://www.data.gv.at/katalog/dataset/b694010f-992a-4d8e-b4ab-b20d0£f037££0. Though, in principle,
one can always inquire with the respective authorities — although that is problematic in itself, since
geographic information is generally handled at the level of provinces, rather than states.

A feasible alternative would be the use of OpenStreetMap. There is a preinstalled plugin (meaning that it
needs to be activated) that lets one parse OSM data from within QGIS. While the OSM data has its problems
(like gaps and a redundant and overly detailed structure), it is often the only possibility of obtaining data.

As ArcGIS is the tool used by professionals (for various reasons), the information is generally available in
VTK vector tiles as generated by ArcGIS from the the natural measure. Such vector tiles are used in viewer
applications, like the online basemap viewers. Depending on the resolution of the envisaged TOAW map, a
sensible choice for the requested zoom level of the tile set should be made. The resolution R of a zoom level
z can be calculated using

cos(LL) w rg

R= 27+z ?

https://qgis.org/en/site/
https://land.copernicus.eu/imagery-in-situ/eu-dem
https://www.data.gv.at/katalog/dataset/d88a1246-9684-480b-a480-ff63286b35b7
https://www.data.gv.at/katalog/dataset/d88a1246-9684-480b-a480-ff63286b35b7
https://www.data.gv.at/katalog/dataset/b694010f-992a-4d8e-b4ab-b20d0f037ff0

Table 1: Grid spacing vs. zoom levels

Grid spacing (km) R (m/px) =z

200 2273 5to 6
100 1136 6to7
50 568.2 7to 8
25 284.1 8to9
20 227.3 8to9
15 170.5 9 to 10
10 113.6 9 to 10
) 56.82 10 to 11
2.5 28.41 11 to 12
1 11.36 13 to 14
0.5 5.682 14 to 15
0.25 2.841 15 to 16

with the radius of the earth rg (6371.009 km, as given per the Wolfram Knowledgebase) and the requested
latitude LL. For a latitude LL = 47.5°, 4. e. central Europe, table [I| provides a guideline for the selection of
the proper zoom level.

When a suitable tile set has been acquired, it needs to be converted into the non-proprietary mbfiles-
format read by QGIS. A converter tool, specifically created due to the availability of the Austrian data, can
be found at https://github.com/BergWerkGIS/vtpk2mbtiles|

The converted files should then be examined carefully, to learn and understand the data structure used.
For each of the steps of this guide a merged, cleaned and repaired vector layer, containing the respective
features, is required.

1.4 This package

What this package provides, is the necessary process description (this document), a set of style (qml) files,
a folder of tileset textures applied by the style files, and two Python scripts. The style files and textures are
used to render a TOAW-a-like map in QGIS; due to projection issues, it looks a bit off, but still provides a
visualization of the creation progress. The first python file, Coverage . py, is for calculation of terrain coverage
and provides a custom function to QGIS; the second, Export.py, is an export script to be run in QGIS that
turns the constructed map layer into a TOAW-readable mml-file.

https://github.com/BergWerkGIS/vtpk2mbtiles

Part II
Process

The process is divided into several sections. Only section [2]is a mandatory step, everything following can be
executed in any order.

Each subsubsection is named for a QGIS tool. The box contains all the necessary settings for that tool;
anything that is not mentioned should not be changed. Occasionally further advice is provided.

The process will create a large number of temporary layers. It is recommended to delete them at the end
of each section. Sometimes during a section multiple layers with the same name will be created. Those can
either be renamed to tell them apart, or simply dragged to another position. QGIS supports drag and drop
for the layer drop down fields, so the correct one (marked in the box) can be used.

The expressions given in the boxes can generally be simply copied. QGIS is in general not too picky
regarding formatting. In some cases, generic parts of the expressions have to be replaced. This is noted
below the box, but care has to be taken when layers have been renamed.

Generally, at the end of each section, a restart of QGIS is required. Sadly, a command to reload layer
data has been suggested for years, but never implemented. Thus, a workaround is required.

If, at any step, QGIS complains about invalid meshes, applying the tool Vector geometry — Fix
geometries should be sufficient. In that case, layer names in the process description may no longer apply.

The folder with the tileset textures has to be in the same folder where the package file is located as the
style files use this path; this becomes important from [2.1.7] on.

2 Grid

Prerequisites:
e Nothing, in principle.

The first step is the creation of a hexagonal grid. As this grid is not perfect due to projection, unavoidable
gaps have to be closed by self-snapping. The hex cells are then numbered using in-game logic. The grid will
be formatted by application of a style file, as it will collect all the tile data over the course of this process.

From the created grid, connection lines (basically borders between the hexagons) have to be extracted
and cleaned. These lines will be used to resolve path-type structures later on.

2.1 General grid

2.1.1 Vector creation — Create grid
Grid type: Hexagon (Polgon)
Grid extent: See below
Horizontal spacing: 2/+/3 * raster
Vertical spacing: raster

ATTENTION: The grid extent has to be sufficient to cover the whole map, plus a margin of at least a
single tile. The top cell of the even rows will be discarded during export to match TOAW’s grid structure.

The horizontal spacing is then calculated using the selected grid spacing (raster). The game uses a
prefactor of 51/44 instead of 2/v/3. We will use the exact value, to minimize rounding errors.

2.1.2 Vector table — Drop field(s)

Input layer: Grid (from [2.1.1))
Fields to drop: left, top, right, bottom
2.1.3 Vector geometry — Snap geometries to layer
Input layer: Remaining fields (from[2.1.2
Reference layer: Remaining fields (from [2.1.2
Behavior: Prefer aligning nodes, don’t insert new vertices

2.1.4 Vector table — Field calculator

Input layer: Snapped geometry (from)
Field name: X

Result field type: Integer
Expression: 2% (x ($geometry) ~aggregate ('snapped_geometry', 'min',x($geometry)))/
(sqrt(3)*raster)

ATTENTION: Replace snapped__geometry by the actual one (from [2.1.3) from the Map Layers panel.
Replace raster by the grid spacing.

2.1.5 Vector table — Field calculator

Input layer: Calculated (from i

Field name: Y

Result field type: Integer

Expression: ceil (round((aggregate('calculated', 'max',y($geometry))-y($geometry))/
/raster-1,1))

ATTENTION: Replace calculated by the actual one (from [2.1.4)) from the Map Layers panel. Replace
raster by the grid spacing.

2.1.6 Export layer

Export layer Calculated (from [2.1.5) as Map into a new package and rename it to Map.

2.1.7 Save the project

Save the project, if not done previously. The next step needs a valid project path.

2.1.8 Format layer

Format layer Map (from [2.1.7) by applying the corresponding QML-layer file to it. The number in the file
name stands for the grid spacing in meters.

2.2 Connection lines

2.2.1 Vector geometry — Polygons to lines

Input layer: Map (from j
2.2.2 Vector geometry — Explode lines
Input layer: Lines (from [2.2.1])
2.2.3 Vector overlay — Intersection
Input layer: Ezxploded (from [2.2.2
Overlay layer: Ezxploded (from [2.2.2
Input fields to keep: id
Overlay fields to keep: id
2.2.4 Vector selection — Extract by expression
Input layer: Intersection (from [2.2.3)
Expression: "id"<>"id_2"

2.2.5 Export layer
Export layer Matching features (from [2.2.4]) as Connections into the package and rename it to Connections.

3 Terrain

Prerequisites:
1. The grid from section
2. A DEM (subsection of the area to be mapped.

In this step, a slope analysis of the DEM will be performed. The result is then averaged over the grid cells.
Terrain cutoff values have to be selected, that are used to build a terrain texture from the data. The texture
is built by determining the terrain type of neighboring grid cells and calculating a contour sum. This sum is
then appended to the grid.

Additionally, escarpments will be drawn as well, using the determined slope values as well as a cells
average height.

3.1 Terrain analysis
3.1.1 Raster — Conversion — Translate

This command is not found in the toolbox, but in the toolbar. Compression is done as it takes only a few
minutes, but cuts analysis time by around 50% — which can be hours in some cases.

Input layer: Select, the DEM (from subsection |1.2)
Advanced Parameters — Additional creation High Compression
options — Profile:

3.1.2 Raster terrain analysis — Slope

Elevation layer: Select the DEM (from subsection

3.1.3 Raster — Conversion — Translate

This command is not found in the toolbox, but in the toolbar. Compression is done as it takes only a few
minutes, but cuts analysis time by around 50% — which can be hours in some cases.

Input layer: Slope (from }

Advanced Parameters — Additional creation High Compression
options — Profile:

3.1.4 Raster analysis — Zonal statistics
Raster layer: Converted (from [3.1.1)
Vector layer containing zones: Map (from section |
Output column prefix: height_
Statistics to calculate: Mean

3.1.5 Raster analysis — Zonal statistics
Raster layer: Converted (from i
Vector layer containing zones: Map (from j
Output column prefix: slope_
Statistics to calculate: Median, Maximum

3.2 Manual inspection

Layer Map (from needs to be manually analyzed to determine the terrain cutoff values. These are
three values that determine the distinction between flat, hilly, mountainous and alpine terrain. Providing
predetermined values is not a good choice, as this distinction depends upon the scale of the grid, the general
area of the map, and the force composition.

Analysis can be performed by activating the Layer Styling Panel. Labels tied to the value of slope_mean
should be activated. Additionally, graduated layer styling tied to the same value (with a suitable number
of classes) should be activated (any existing stylings can be safely deleted). Therefore, each cell has a label
and a color. Comparison with terrain features from an orthophoto can then be used to determine the cutoff
values by — completely arbitrarily — assigning a terrain type to noteable terrain features, ¢.e. passes that
have to be mountainous or alpine, ranges that have to be hilly, or similar. The graduated styling can then

be adapted until there

are only four colors left.

3.3 Generate terrain texture

3.3.1 Vector table

— Field calculator

Input layer:
Field name:
Result field type:
Expression:

Map (from

terrain

Integer

CASE WHEN "slope_median" > alpine THEN 3 WHEN "slope_median" >
mountain THEN 2 WHEN "slope_median" > hill THEN 1 ELSE O END

ATTENTION: alpine, mountain and hill are the cutoff values that were determined in subsection [3.2

3.3.2 Vector table

— Field calculator

Input layer:

Calculated (from

Field name: escarp
Result field type: Integer
Expression: CASE WHEN "slope_max" > 75 THEN 5
WHEN "slope_max" > 60 THEN 4 ELSE O END
3.3.3 Vector general — Join attributes by nearest

Input layer:
Input layer 2:

Maximum distance:

Layer 2 fields to copy: id, height_mean, terrain, escarp
Maximum nearest neighbors: 6

Calculated (from [3.3.2
Calculated (from [3.3.2

raster/2+1

ATTENTION: The maximum distance is calculated using the selected grid spacing. The added 1 is to
account for rounding errors.

3.3.4 Vector table

— Field calculator

Input layer:
Field name:
Result field type:
Expression:

Joined layer (from [3.3.3))
base2

Integer

27 (3*xazimuth(make_point (x($geometry) ,y($geometry)),

make_point (x(geometry(get_feature_by_id('map_layer',
attribute('id_2')))),y(geometry(get_feature_by_id('map_layer',
attribute('id_2'))))))/pi())

ATTENTION: Replace map_layer by the actual one (from section) from the Map Layers panel.

3.3.5 Vector general — Execute SQL

SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_06 FROM Calculated
WHERE terrain > O AND terrain_2 > O GROUP BY id
Geometry type: No geometry
ATTENTION: Calculated (from (3.3.4).
3.3.6 Vector general — Execute SQL
SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_07 FROM Calculated
WHERE terrain > 1 AND terrain_2 > 1 GROUP BY id
Geometry type: No geometry
ATTENTION: Calculated (from [3.3.4]).
3.3.7 Vector general — Execute SQL
SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_08 FROM Calculated
WHERE terrain > 2 AND terrain_2 > 2 GROUP BY id
Geometry type: No geometry
ATTENTION: Calculated (from [3.3.4).
3.3.8 Vector general — Execute SQL
SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_20 FROM Calculated

WHERE escarp = 4 AND height_mean > height_mean_2 GROUP BY id
Geometry type: No geometry

ATTENTION: Calculated (from [3.3.4).

3.3.9 Vector general — Execute SQL

SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_21 FROM
WHERE escarp = 5 AND height_mean > height_mean_2 GROUP BY id
Geometry type: No geometry

Calculated

ATTENTION: Calculated (from [3.3.4).

3.3.10 Vector general — Join attributes by field value

Input layer: Map (from

Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_06

3.3.11 Vector general — Join attributes by field value

Input layer:

Joined layer (from [3.3.10))

Table field: id
Input layer 2: SQL Output (from |3.3.6)
Table field 2: id
Layer 2 fields to copy: base2_07
3.3.12 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from b

id

SQL Output (from i
id

base2_08

3.3.13 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from (3.3.12)

id

SQL Output (from |
id

base2_20

3.3.14 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from (3.3.13)
id

SQL Output (from [3.3.9)
id

base2_21

3.3.15 Vector table — Drop field(s)

Input layer:
Fields to drop:

Joined layer (from [3.3.14))

height_mean, slope_median, slope_max

3.3.16 Export layer

Export layer Joined layer (from [3.3.15)) as Map into

,Add saved file to map”.

3.3.17 Save the project
Save the project and restart QGIS.

10

the package (overwriting the old layer) — Uncheck

4 Coverage
Prerequisites:

1. The grid from section

[\

polygon layer containing all features counting as cropland of the area to be mapped.

multi-)polygon layer containing all features counting as forests of the area to be mapped.

5

- A (multic)
3. A ()
4. A (multi-)polygon layer containing all features counting as settlements of the area to be mapped.
. A (multi-)polygon layer containing all features counting as marshes of the area to be mapped.
- A (multi-)

6 multi-)polygon layer containing all features counting as fillers of the area to be mapped.

Initially, one has to understand which features from the base data are supposed to represent what type of
in-game coverage. The features should be selected and grouped into the above four categories accordingly.
To clarify here, if any category is missing, that type of coverage will (and can) simply not be generated. The
respective steps in the process will then have to be skipped; in the calculations using the custom function,
the respective entry needs to be replaced by a zero.

The filler is a special type of layer that incorporates features that should be considered in determining
the coverage texture, but do not constitute a texture in themselves. The two most prominent types are the
water layer (see section [5) and the traffic net (see section @, that is a polygon feature (additionally to a
(multi-)line layer) at higher zoom levels. Both of these types receive their own treatment. A filler is not
strictly necessary, as the texture will generate without it, but will improve the quality of the final result.

The process computes a overlap percentage and uses a custom-written function to determine the coverage
type for each cell. (It does so by calculating distances in five-dimensional parameter space to various defined
anchor points.) Again, the contour sum is then calculated by determining the coverage type of neighboring
cells to determine the coverage texture.

To use the custom function, the script file Coverage.py needs to be copied to
User\AppData\Roaming\QGIS\QGIS3\profiles\default\python\expressions (for a Windows installation).
In the function needs to be activated by switching to the ,Function Editor” tab and hitting ,,Save and
Load Functions” to compile the Python script. It can only be used if it appears in the function list, under
Coverage.

It is generally a good idea to fix the geometries before proceeding. Since feature size has a huge impact
on computation time, it is almost mandatory to apply the following procedure beforehand on all the feature
layers:

4.0.1 Vector geometry — Subdivide

Input layer: Select the feature layer

Afterwards, the geometry of the layers is usually invalid and needs fixing. The fixed layers need to be
renamed to Cropland, Filler, Forest, Marsh, and Urban, to make the following steps easier.

4.1 Coverage analysis

4.1.1 Vector analysis — Overlap analysis
Input layer: Map (from
Overlay layers: Cropland, Filler, Forest, Marsh, Urban

11

4.1.2 Vector table

— Field calculator

Input layer:
Field name:
Result field type:
Expression:

Overlap (from |4.1.1))

base2_09
Integer

coverage_type('09',"Cropland_pc","Filler_pc","Forest_pc","Marsh_pc",

"Urban_pc")

4.1.3 Vector table

— Field calculator

Input layer:
Field name:
Result field type:
Expression:

Calculated (from [4.1.2)
base2_10
Integer

coverage_type('10',"Cropland_pc","Filler_pc","Forest_pc","Marsh_pc",

"Urban_pc")

4.1.4 Vector table

— Field calculator

Input layer:
Field name:
Result field type:
Expression:

Calculated (from [4.1.3)

base2_13
Integer

coverage_type('13',"Cropland_pc","Filler_pc","Forest_pc","Marsh_pc",

"Urban_pc")

4.1.5 Vector table

— Field calculator

Input layer:
Field name:
Result field type:
Expression:

Calculated (from [4.1.4)
base2_14
Integer

coverage_type('14',"Cropland_pc","Filler_pc","Forest_pc","Marsh_pc",

"Urban_pc")

4.1.6 Vector table

— Field calculator

Input layer:
Field name:
Result field type:
Expression:

Calculated (from [4.1.5)

base2_15
Integer

coverage_type('15',"Cropland_pc","Filler_pc","Forest_pc","Marsh_pc",

"Urban_pc")

4.1.7 Vector table

— Field calculator

Input layer:
Field name:
Result field type:
Expression:

Calculated (from [4.1.6)
base2_16
Integer

coverage_type('16',"Cropland_pc","Filler_pc","Forest_pc","Marsh_pc",

"Urban_pc")

12

4.1.8 Vector table — Field calculator
Input layer: Calculated (from [4.1.7)

Field name: base2_28

Result field type: Integer

Expression: coverage_type('28',"Cropland_pc","Filler_pc","Forest_pc","Marsh_pc",
"Urban_pc")

4.1.9 Vector table — Field calculator

Input layer: Calculated (from

Field name: base2_29

Result field type: Integer

Expression: coverage_type('29',"Cropland_pc","Filler_pc","Forest_pc","Marsh_pc",
"Urban_pc")

4.2 Generate coverage texture

4.2.1 Vector general — Join attributes by nearest
Input layer: Calculated (from |4.1.9
Input layer 2: Calculated (from [4.1.9
Layer 2 fields to copy: id, base2_09, base2_10, base2_13, base2_14,
base2_15, base2_16, base2_28, base2_29
Maximum nearest neighbors: 6
Maximum distance: raster/2+1

ATTENTION: The maximum distance is calculated using the selected grid spacing. The added 1 is to
account for rounding errors.

4.2.2 Vector table — Field calculator

Input layer: Joined layer (from

Field name: base2

Result field type: Integer

Expression: 27 (3*xazimuth(make_point (x($geometry) ,y ($geometry)),

make_point (x(geometry(get_feature_by_id('map_layer',
attribute('id_2')))),y(geometry(get_feature_by_id('map_layer',
attribute('id_2'))))))/pi())

ATTENTION: Replace map_layer by the actual one (from section) from the Map Layers panel.

4.2.3 Vector general — Execute SQL

SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_09 FROM Calculated
WHERE base2_09 = 63 AND (base2_09_2 = 63 OR base2_10_2 = 63)
GROUP BY id

Geometry type: No geometry

ATTENTION: Calculated (from [4.2.2).

13

4.2.4 Vector general — Execute SQL

SQL Query:

Geometry type:

SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_10 FROM Calculated
WHERE base2_10 = 63 AND (base2_10_2 = 63 OR base2_09_2 = 63)

GROUP BY id

No geometry

ATTENTION: Calculated (from [4.2.2]).

4.2.5 Vector general — Execute SQL

SQL Query:

Geometry type:

SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_13 FROM Calculated
WHERE base2_13 = 63 AND (base2_13_2 = 63 OR base2_14_2 = 63)

GROUP BY id

No geometry

ATTENTION: Calculated (from [4.2.2)).

4.2.6 Vector general — Execute SQL

SQL Query:

Geometry type:

SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_14 FROM Calculated
WHERE base2_14 = 63 AND (base2_13_2 = 63 OR base2_14_2 = 63)

GROUP BY id

No geometry

ATTENTION: Calculated (from [4.2.2]).

4.2.7 Vector general — Execute SQL

SQL Query:

Geometry type:

SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_15 FROM Calculated
WHERE base2_15 = 63 AND base2_15_2 = 63 GROUP BY id
No geometry

ATTENTION: Calculated (from [4.2.2)).

4.2.8 Vector general — Execute SQL

SQL Query:

Geometry type:

SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_16 FROM Calculated
WHERE base2_16 = 63 AND base2_16_2 = 63 GROUP BY id
No geometry

ATTENTION: Calculated (from [4.2.2)).

4.2.9 Vector general — Execute SQL

SQL Query:

Geometry type:

SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_28 FROM Calculated
WHERE base2_28 = 63 AND base2_28_2 = 63 GROUP BY id
No geometry

ATTENTION: Calculated (from [4.2.2)).

14

4.2.10 Vector general — Execute SQL

SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_29 FROM Calculated
WHERE base2_29 = 63 AND base2_29_2 = 63 GROUP BY id
Geometry type: No geometry

ATTENTION: Calculated (from [4.2.2)).

4.2.11 Vector general — Join attributes by field value

Input layer: Map (from

Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_09

4.2.12 Vector general — Join attributes by field value

Input layer: Joined layer (from
Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_10

4.2.13 Vector general — Join attributes by field value

Input layer: Joined layer (from
Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_13

4.2.14 Vector general — Join attributes by field value

Input layer: Joined layer (from
Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_14

4.2.15 Vector general — Join attributes by field value

Input layer: Joined layer (from)
Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_15

15

4.2.16 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from [4.2.15))

id

SQL Output (from |
id

base2_16

4.2.17 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from [4.2.16))

id

SQL Output (from i
id

base2_28

4.2.18 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from [4.2.17)

id

SQL Output (from [4.2.10))
id

base2_29

4.2.19 Export layer

Export layer Joined layer (from [4.2.18]) as Map into

»Add saved file to map”.

4.2.20 Save the project

Save the project and restart QGIS.

the package (overwriting the old layer) — Uncheck

16

5 Water

Prerequisites:
1. The grid from section
2. A (multi-)polygon layer containing all features of water of the area to be mapped.

Distributing water cells depending upon a simple overlap percentage is in principle possible, but will introduce
discretization errors. This can be understood with the following example: A body of water can cover an area
equal to a full hexagon, but be located between three adjacent cells. For all of those cells, the overlap
percentage is below 50%, and hence no water cell will be drawn.

Furthermore, the contouring of the water cells does not happen in the cells themselves, but in the adjacent,
non-water, cells, where the shore is located graphically.

Thus the calculated overlap values will be ,fuzzified” by considering the overlap of the adjacent cells
before the water cells are created. For contouring, the cells adjacent to water features a determined and
receive an inverse contour.

The water layer need to be renamed to Water to make the following steps easier. Similarly to the coverage
analysis, subdividing the water layer can improve computation speed.

5.1 Cumulative overlap analysis

5.1.1 Vector analysis — Overlap analysis
Input layer: Map (from
Overlay layers: Water

5.1.2 Vector general — Join attributes by nearest
Input layer: Overlap (from |5.1.1
Input layer 2: Overlap (from |5.1.1
Layer 2 fields to copy: id, Water_pc
Maximum nearest neighbors: 6
Maximum distance: raster /241

ATTENTION: The maximum distance is calculated using the selected grid spacing. The added 1 is to
account for rounding errors.

5.1.3 Vector general — Execute SQL

SQL Query: SELECT id,
Water_pc*(1+SUM((1-ABS(Water_pc-Water_pc_2)/100)*Water_pc_2)/100) AS
waterf_pc FROM 'Joined layer' WHERE Water_pc > O GROUP BY id, Water_pc

Geometry type: No geometry

ATTENTION: Joined layer (from [5.1.2)).

5.2 Generate water texture

5.2.1 Vector general — Join attributes by field value

Input layer: Joined layer (from
Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: waterf_pc

17

5.2.2 Vector general — Join attributes by field value

Input layer: Joined layer (from |5.2.1)
Table field: id_2
Input layer 2: SQL Output (from [5.1.3)
Table field 2: id
Layer 2 fields to copy: waterf_pc
5.2.3 Vector selection — Extract by expression
Input layer: Joined layer (from [5.2.2)
Expression: ("waterf_pc" < 50 OR "waterf_pc" IS NULL)

AND "waterf_pc_2" >= 50

5.2.4 Vector table — Field calculator

Input layer: Matching features (from

Field name: base2

Result field type: Integer

Expression: 27 (3*xazimuth(make_point (x($geometry) ,y($geometry)),

make_point (x(geometry(get_feature_by_id('map_layer',
attribute('id_2')))),y(geometry(get_feature_by_id('map_layer',
attribute('id_2'))))))/pi())

ATTENTION: Replace map_layer by the actual one (from section [2))) from the Map Layers panel.

5.2.5 Vector general — Execute SQL

SQL Query: SELECT id, 63-base2_36 AS base2_36 FROM (SELECT id,
CAST(ROUND(SUM(base2),0) AS INT) AS base2_36 FROM Calculated GROUP BY
id) AS Hash WHERE base2_36 IS NOT NULL

Geometry type: No geometry

ATTENTION: Calculated (from [5.2.4)).

5.2.6 Vector table — Field calculator

Input layer: Map (from

Field name: base2_11

Result field type: Integer

Expression: if (attribute(get_feature('sql_output','id',attribute('id')),
'waterf_pc')>50,63,NULL)

ATTENTION: Replace sgl_output by the actual one (from [5.1.3))) from the Map Layers panel.

5.2.7 Vector general — Join attributes by field value

Input layer: Calculated (from
Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_36

18

5.2.8 Export layer

Export layer Joined layer (from[5.2.7) as Map into the package (overwriting the old layer) — Uncheck ,Add
saved file to map”.

5.2.9 Save the project
Save the project and restart QGIS.

19

6 Paths

Prerequisites:
1. The grid from section

2. multi-)line layer containing all rivers of the area to be mapped.

3. multi-)line layer containing all super rivers of the area to be mapped.
4. multi-)line layer containing both rivers and super rivers of the area to be mapped.

multi-)line layer containing all improved roads of the area to be mapped.

7.

A()
A()
A ()
5. A (multi-)line layer containing all roads of the area to be mapped.
A)
A (multi-)line layer containing both roads and improved roads of the area to be mapped.
A ()

8. multi-)line layer containing all rail lines of the area to be mapped.

Initially, one has to decide which features from the base data to include in which category; generally, there
exists a much more detailed net of features than one would represent in even a map with the smallest grid
size.

Creating paths is a bit more involved, as here not only the grid cells themselves are important, but also
the connections between them. Paths can meander, and hence two adjacent cells containing the same path
are not necessarily connected, as is the case for the texture.

The path intersections with both the cells and the connections lines have to be calculated. This information
is then used to calculate the contour sum once again.

It is advised to make a single pass for the three type of paths. Building them all at once is possible, but
will lead to a large number of equally-named temporary layers, and may lead to errors due to confusion.

If some types (say, roads) do not wish to be created, the appropriate steps can be skipped.

6.1 Rivers

6.1.1 Vector selection — Extract by location

Extract features from: Connections (from

By comparing to the features from: Select the combined river layer
6.1.2 Vector selection — Extract by location

Extract features from: Map (from

By comparing to the features from: Select the river layer
6.1.3 Vector selection — Extract by location

Extract features from: Map (from

By comparing to the features from: Select the super river layer

6.1.4 Vector general — Join attributes by field value

Input layer: Map (from

Table field: id

Input layer 2: Extracted (location) (from
Table field 2: id

Layer 2 fields to copy: id

20

6.1.5 Vector general — Join attributes by field value

Input layer: Joined layer (fro

Table field: id

Input layer 2: Extracted (location) (from
Table field 2: id

Layer 2 fields to copy: id

6.1.6 Vector general — Join attributes by field value

Input layer: Joined layer (from

Table field: id

Input layer 2: Extracted (location) (from [6.1.1)

Table field 2: id

Layer 2 fields to copy: id_2

Join type: Create separate feature for each matching feature
Discard records which could not be joined: v

6.1.7 Vector table — Field calculator

Input layer: Joined layer (from

Field name: base2

Result field type: Integer

Expression: 27 (3*xazimuth(make_point (x($geometry) ,y($geometry)),

make_point (x(geometry(get_feature_by_id('map_layer',
attribute('id_2_2')))),y(geometry(get_feature_by_id('map_layer',
attribute('id_2_2'))))))/pi())

ATTENTION: Replace map_layer by the actual one (from section) from the Map Layers panel.

6.1.8 Vector general — Execute SQL

SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2 23
FROM Calculated WHERE id_3 IS NULL GROUP BY id
Geometry type: No geometry

ATTENTION: Calculated (from [6.1.7).

6.1.9 Vector general — Execute SQL

SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_24
FROM Calculated WHERE id_3 IS NOT NULL GROUP BY id
Geometry type: No geometry

ATTENTION: Calculated (from [6.1.7).

6.1.10 Vector general — Join attributes by field value

Input layer: Map (from

Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_23

21

6.1.11 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from [6.1.10))
id

SQL Output (from |
id

base2_24

6.1.12 Export layer

Export layer Joined layer (from [6.1.11]) as Map into

»Add saved file to map”.

6.1.13 Save the project
Save the project and restart QGIS.

6.2 Roads

6.2.1 Vector selection — Extract by location

the package (overwriting the old layer) — Uncheck

Extract features from:
By comparing to the features from:

Connections (from
Select the combined road layer

6.2.2 Vector selection — Extract by location

Extract features from:
By comparing to the features from:

Mayp (from
Select the road layer

6.2.3 Vector selection — Extract by location

Extract features from:
By comparing to the features from:

Mayp (from
Select the improved road layer

6.2.4 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Map (from

id
Extracted (location) (from [6.2.2)
id
id

6.2.5 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from(6.2.4)

id
Eztracted (location) (from [6.2.3))
id
id

22

6.2.6 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Join type:

Discard records which could not be joined:

Joined layer (from [6.2.5)

id

Extracted (location) (from [6.2.1)
id

id_2

Create separate feature for each matching feature

v

6.2.7 Vector table — Field calculator

Joined layer (from [6.2.6)

base?2
Integer

Input layer:
Field name:
Result field type:
Expression:

27 (3*azimuth(make_point (x($geometry) ,y($geometry)),

make_point (x(geometry(get_feature_by_id('map_layer',
attribute('id_2_2')))),y(geometry(get_feature_by_id('map_layer',
attribute('id_2_2'))))))/pi())

ATTENTION: Replace map_layer by the actual one (from section) from the Map Layers panel.

6.2.8 Vector general — Execute SQL

SQL Query:

SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_32

FROM Calculated WHERE id_3 IS NULL GROUP BY id

Geometry type: No geometry

ATTENTION: Calculated (from[6.2.7).

6.2.9 Vector general — Execute SQL

SQL Query:

Geometry type: No geometry

SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_33
FROM Calculated WHERE id_3 IS NOT NULL GROUP BY id

ATTENTION: Calculated (from[6.2.7).

6.2.10 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Map (from

id

SQL Output (from |
id

base2_32

6.2.11 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from [6.2.10)

id

SQL Output (from D
id

base2_33

23

6.2.12 Export layer

Export layer Joined layer (from [6.2.11]) as Map into the package (overwriting the old layer) — Uncheck
,Add saved file to map”.

6.2.13 Save the project

Save the project and restart QGIS.

6.3 Rail
6.3.1 Vector selection — Extract by location
Extract features from: Connections (from
By comparing to the features from: Select the rail layer
6.3.2 Vector selection — Extract by location
Extract features from: Map (from
By comparing to the features from: Select the rail layer

6.3.3 Vector general — Join attributes by field value

Input layer: Map (from

Table field: id

Input layer 2: Eztracted (location) (from
Table field 2: id

Layer 2 fields to copy: id

6.3.4 Vector general — Join attributes by field value

Input layer: Joined layer (from

Table field: id

Input layer 2: Extracted (location) (from

Table field 2: id

Layer 2 fields to copy: id_2

Join type: Create separate feature for each matching feature
Discard records which could not be joined: v

6.3.5 Vector table — Field calculator

Input layer: Joined layer (from

Field name: base2

Result field type: Integer

Expression: 27 (3*xazimuth(make_point (x($geometry) ,y ($geometry)),

make_point (x(geometry(get_feature_by_id('map_layer',
attribute('id_2_2')))),y(geometry(get_feature_by_id('map_layer',
attribute('id_2_2'))))))/pi0)

ATTENTION: Replace map_layer by the actual one (from section) from the Map Layers panel.

24

6.3.6 Vector general — Execute SQL

SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_34
FROM Calculated GROUP BY id
Geometry type: No geometry

ATTENTION: Calculated (from|6.3.5).

6.3.7 Vector general — Join attributes by field value

Input layer: Map (from

Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_34

6.3.8 Export layer

Export layer Joined layer (from|6.3.7) as Map into the package (overwriting the old layer) — Uncheck ,, Add
saved file to map”.

6.3.9 Save the project
Save the project and restart QGIS.

25

7 Borders

Prerequisites:
1. The grid from section
2. A (multi-)line layer containing all international borders of the area to be mapped.

Borders will be determined by transforming them into the area of the respective country. This process
requires that the border line forms a closed loop; depending upon quality and resolution of the tileset, this
is not guaranteed. Autosnapping (as in can help, whereas large gaps in the data, but also due to the
selection of the map area, have to be closed by hand.

The area polygon is then used to calculate a cell overlap, where the contouring is performed in a similar
fashion as for water features. Again, subdividing the generated polygon layer will improve computation
speed, but the created subdivision can sometimes wreak havoc to the layer format. In that case, Vector
geometry — Multipart to singleparts can help.

7.1 Overlap analysis
7.1.1 Vector geometry — Polygonize

Input layer: Select the border layer

7.1.2 Vector analysis — Overlap analysis

Input layer: Map (from
Overlay layers: Polygons (from)

7.2 Overlap texture

7.2.1 Vector general — Join attributes by nearest
Input layer: Overlap (from |7.1.2
Input layer 2: Overlap (from [7.1.2
Layer 2 fields to copy: id, Polygons_pc
Maximum nearest neighbors: 6
Maximum distance: raster/2+1

ATTENTION: The maximum distance is calculated using the selected grid spacing. The added 1 is to
account for rounding errors.

7.2.2 Vector selection — Extract by expression
Input layer: Joined layer (from |
Expression: ("Polygons_pc" >= '50' AND "Polygons_pc_2"

< '50') OR ("Polygons_pc" < '50' AND
"Polygons_pc_2" >= '50')

26

7.2.3 Vector table — Field calculator

Input layer: Matching features (from

Field name: base2

Result field type: Integer

Expression: 27 (3*xazimuth(make_point (x($geometry) ,y ($geometry)),

make_point (x(geometry(get_feature_by_id('map_layer',
attribute('id_2')))) ,y(geometry(get_feature_by_id('map_layer',
attribute('id_2'))))))/pi0))

ATTENTION: Replace map_layer by the actual one (from section) from the Map Layers panel.

7.2.4 Vector general — Execute SQL

SQL Query: SELECT id, CAST(ROUND(SUM(base2),0) AS INT) AS base2_44 FROM
Calculated GROUP BY id
Geometry type: No geometry

ATTENTION: Calculated (from [7.2.3)).

7.2.5 Vector general — Join attributes by field value

Input layer: Map (from

Table field: id

Input layer 2: SQL Output (from
Table field 2: id

Layer 2 fields to copy: base2_44

7.2.6 Export layer

Export layer Joined layer (from|7.2.5) as Map into the package (overwriting the old layer) — Uncheck ,,Add
saved file to map”.

7.2.7 Save the project
Save the project and restart QGIS.

27

8 Annotations

Prerequisites:

1. The grid from section

2. A (multi-)point layer containing all large font labels of the area to be mapped.
3. A (multi-)point layer containing all blue font labels of the area to be mapped.

4. A (multi-)point layer containing all default font labels of the area to be mapped.
5. A (multi-)point layer containing all small font labels of the area to be mapped.
6. A (multi-)point layer containing all peaks of the area to be mapped.

7. A (multi-)point layer containing all airfields of the area to be mapped.

By annotations we mean all features that do only exist in a single hex cell such that no contouring is
necessary. This consists of the four types of standard labels as well as peaks and airfields.

In each case, the annotations will be joined with the cells based on location.

For the labels, it is expected that that the point layers contain the label text in a field named label.

8.1 Labels
8.1.1 Vector table — Field calculator
Input layer: Select the layer with the labels for the first category
Field name: label
Result field type: String
Expression: '#1' + "label"

8.1.2 Vector table — Field calculator

Input layer: Select the layer with the labels for the second category
Field name: label

Result field type: String

Expression: '#2' + "label"

8.1.3 Vector table — Field calculator

Input layer: Select the layer with the labels for the third category
Field name: label
Result field type: String
Expression: '#3' + "label"
8.1.4 Vector general — Join attributes by location
Base layer: Map (from D
Join layer: Calculated (from
Fields to add: label
Join type: Take attributes of the first matching feature only
Discard records which could not be joined: v

28

8.1.5 Vector general — Join attributes by location

Base layer:

Join layer:

Fields to add:

Join type:

Discard records which could not be joined:

Map (from [2)
Calculated (from)
label

Take attributes of the first matching feature only
v

8.1.6 Vector general — Join attributes by location

Base layer:

Join layer:

Fields to add:

Join type:

Discard records which could not be joined:

Map (from D
Calculated (from '
label

Take attributes of the first matching feature only
v

8.1.7 Vector general — Join attributes by location
Base layer: Map (from
Join layer: Select the layer with the labels without a category
Fields to add: label
Join type: Take attributes of the first matching feature only

Discard records which could not be joined:

v

8.1.8 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Mayp (from

id

Joined layer (from D
id

label

8.1.9 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from D

id

Joined layer (from [3.1.5)
id

label

8.1.10 Vector general — Join attributes by field value

Input layer:

Table field:

Input layer 2:

Table field 2:

Layer 2 fields to copy:

Joined layer (from [3.1.9)

id

Joined layer (from)
id

label

29

8.1.11 Vector general — Join attributes by field value

Input layer: Joined layer (from
Table field: id

Input layer 2: Joined layer (from
Table field 2: id

Layer 2 fields to copy: label

8.1.12 Vector table — Field calculator

Input layer: Joined layer (from|8.1.11)

Field name: label
Result field type: String
Expression: CASE WHEN "label" IS NOT NULL THEN "label" WHEN "label_2" IS NOT NULL

THEN "label_2" WHEN "label_3" IS NOT NULL THEN "label_3" WHEN
"label_4" IS NOT NULL THEN "label_4" END

8.1.13 Vector table — Drop field(s)

Input layer: Calculated (from [8.1.12)
Fields to drop: label_2, label_3, label 4

8.1.14 Export layer

Export layer Remaining fields (from[8.1.13]) as Map into the package (overwriting the old layer) — Uncheck
»Add saved file to map”.

8.1.15 Save the project

Save the project and restart QGIS.

8.2 Symbols
8.2.1 Vector selection — Extract by location
Extract features from: Map (from
By comparing to the features from: Select the airfield layer

8.2.2 Vector table — Field calculator

Input layer: Extracted (location) (from [8.2.1)
Field name: base2_39

Result field type: Integer

Expression: 2

8.2.3 Vector general — Join attributes by field value

Input layer: Map (from

Table field: id

Input layer 2: Calculated (from
Table field 2: id

Layer 2 fields to copy: base2_39

30

8.2.4 Vector selection — Extract by location

Extract features from: Map (from
By comparing to the features from: Select the peak layer

8.2.5 Vector table — Field calculator

Input layer: Eztracted (location) (from
Field name: base2_39

Result field type: Integer

Expression: 4

8.2.6 Vector general — Join attributes by field value

Input layer: Joined layer (from
Table field: id

Input layer 2: Calculated (from
Table field 2: id

Layer 2 fields to copy: base2_39

8.2.7 Vector table — Field calculator
Input layer: Joined layer (from }

Field name: base2_39
Result field type: Integer
Expression: CASE WHEN "base2_39" IS NOT NULL THEN "base2_39" WHEN "base2_39_2"

IS NOT NULL THEN "base2_39_2" END

8.2.8 Vector table — Drop field(s)

Input layer: Calculated (from D
Fields to drop: base2_39_2

8.2.9 Export layer

Export layer Remaining fields (from [8.2.8)) as Map into the package (overwriting the old layer) — Uncheck
»Add saved file to map”.

8.2.10 Save the project
Save the project and restart QGIS.

31

9 Exporting
9.1 Plugins — Python Console — Show Editor — Open Script...

Open the script file Export.py and run it. It creates a TOAW readable Export.mml map in the same
directory as the QGIS project. The export can be performed at any time; it will simply skip fields that it
cannot find in the Map layer.

32

	I Preamble
	1 Requirements
	1.1 QGIS
	1.2 DEM
	1.3 Basemap
	1.4 This package

	II Process
	2 Grid
	2.1 General grid
	2.2 Connection lines

	3 Terrain
	3.1 Terrain analysis
	3.2 Manual inspection
	3.3 Generate terrain texture

	4 Coverage
	4.1 Coverage analysis
	4.2 Generate coverage texture

	5 Water
	5.1 Cumulative overlap analysis
	5.2 Generate water texture

	6 Paths
	6.1 Rivers
	6.2 Roads
	6.3 Rail

	7 Borders
	7.1 Overlap analysis
	7.2 Overlap texture

	8 Annotations
	8.1 Labels
	8.2 Symbols

	9 Exporting
	9.1 Plugins — Python Console — Show Editor — Open Script…

